EXERCISES

Practice and Problem Solving

Practice by Example

Let f(x) = 3x + 5 and $g(x) = x^2$. Perform each function operation.

Examples 1 ar	ıd 2
(pages 392 and 3	393)

1. $f(x) + g(x)$	2. $g(x) - f(x)$	3. $f(x) - g(x)$
$4. f(x) \cdot g(x)$	5. $\frac{f(x)}{g(x)}$	6. $\frac{g(x)}{f(x)}$
7. $(f + g)(x)$	8. $(f - g)(x)$	9. $(g - f)(x)$
10. $(f \cdot g)(x)$	11. $\left(\frac{f}{g}\right)(x)$	12. $\left(\frac{g}{f}\right)(x)$

Let $f(x) = 2x^2 + x - 3$ and g(x) = x - 1. Perform each function operation and then find the domain.

13.
$$f(x) + g(x)$$
14. $g(x) - f(x)$ **15.** $f(x) - g(x)$ **16.** $f(x) \cdot g(x)$ **17.** $\frac{f(x)}{g(x)}$ **18.** $\frac{g(x)}{f(x)}$

19. Let f(x) = 9x and g(x) = 3x. Find $(f \cdot g)(x)$ and $\left(\frac{f}{g}\right)(x)$ and their domains.

Example 3

Use each diagram to find $(g \circ f)(x)$. Then evaluate $(g \circ f)(3)$ and $(g \circ f)(-2)$.

(page 393)

20. $\Rightarrow \rightarrow g(x) = x + 3$ f(x) = 2x21.

Let g(x) = 2x and $h(x) = x^2 + 4$. Evaluate each expression.

22. (<i>h</i> ° <i>g</i>)(1)	23. $(h \circ g)(-5)$	24. (<i>h</i> ∘ <i>g</i>)(−2)
25. (<i>g</i> ∘ <i>h</i>)(−2)	26. $(g \circ h)(0)$	27. (<i>g</i> ∘ <i>h</i>)(−1)
28. (g ° g)(3)	29. (<i>h</i> ° <i>h</i>)(2)	30. (<i>h</i> ∘ <i>h</i>)(−4)

Let $f(x) = x^2$ and g(x) = x - 3. Find each value or expression.

31. (<i>g</i> ∘ <i>f</i>)(−2)	32. (<i>f</i> ∘ <i>g</i>)(−2)	33. (<i>g</i> ° <i>f</i>)(0)
34. (<i>f</i> ° <i>g</i>)(0)	35. (<i>g</i> ∘ <i>f</i>)(3.5)	36. (<i>f</i> ∘ <i>g</i>)(3.5)
37. $(f \circ g) \left(\frac{1}{2}\right)$	38. $(g \circ f)(\frac{1}{2})$	39. $(f \circ g)(c)$
40. $(g \circ f)(c)$	41. $(f \circ g)(-a)$	42. $(g \circ f)(-a)$

Example 4 (page 394)

- **43.** Sales A car dealer offers a 10% discount off the list price x for any car on the lot. At the same time, the manufacturer offers a \$2000 rebate for each purchase of a car.
 - **a.** Write a function f(x) to represent the price after the discount.
 - **b.** Write a function g(x) to represent the price after the \$2000 rebate.
 - c. Suppose the list price of a car is \$18,000. Use a composite function to find the price of the car if the discount is applied before the rebate.
 - d. Suppose the list price of a car is \$18,000. Use a composite function to find the price of the car if the rebate is applied before the discount.

- **44.** Economics Suppose the function f(x) = 0.12x represents the number of U.S. dollars equivalent to x Chinese yuan and the function g(x) = 9.14x represents the number of Mexican pesos equivalent to x U.S. dollars.
 - **a.** Write a composite function that represents the number of Mexican pesos equivalent to *x* Chinese yuan.
 - b. Find the value in Mexican pesos of an item that costs 15 Chinese yuan.

3 Apply Your Skills

Let f(x) = 2x + 5 and $g(x) = x^2 - 3x + 2$. Perform each function operation.

45. $f(x) + g(x)$	46. $3f(x) - 2$	47. $g(x) - f(x)$
48. $-2g(x) + f(x)$	49. $f(x) - g(x) + 10$	50. $4f(x) + 2g(x)$

Let $f(x) = 3x^2 + 2x - 8$ and g(x) = x + 2. Perform each function operation and then find the domain.

51. $-f(x) + 4g(x)$	52. $f(x) - 2g(x)$	53. $f(x) \cdot g(x)$
54. $-3f(x) \cdot g(x)$	55. $\frac{f(x)}{g(x)}$	56. $\frac{5f(x)}{g(x)}$

57. Writing Evaluate $(g \circ f)(3)$, when f(x) = 2x and g(x) = x + 1. Explain what you do first and why.

Let $g(x) = 3x + 2$ and $f(x) = \frac{x-2}{3}$. Find each value.					
58. <i>f</i> (<i>g</i> (1))	59. $g(f(-4))$	60. <i>f</i> (<i>g</i> (0))	61. <i>g</i> (<i>f</i> (2))		

62. Geometry You toss a pebble into a pool of water and watch the circular ripples radiate outward. You find that the function r(x) = 12.5x describes the radius r in inches of a circle x seconds after it was formed. The function $A(x) = \pi x^2$ describes the area A of a circle with radius x.

a. Find $(A \circ r)(x)$ when x = 2. Interpret your answer.

b. Find the area of a circle 4 seconds after it was formed.

For each pair of functions, find f(g(x)) and g(f(x)).

63. $f(x) = 3x, g(x) = x^2$	64. $f(x) = x + 3, g(x) = x - 5$
65. $f(x) = 3x^2 + 2, g(x) = 2x$	66. $f(x) = \frac{x-3}{2}, g(x) = 2x - 3$
67. $f(x) = -x - 7, g(x) = 4x$	68. $f(x) = \frac{x+5}{2}, g(x) = x^2$

69. Open-Ended Write a function rule that approximates each value.

a. The amount you save is a percent of what you earn. (You choose the percent.)

- **b.** The amount you earn depends on how many hours you work. (You choose the hourly wage.)
- **c.** Write and simplify a composite function that expresses your savings as a function of the number of hours you work. Interpret your results.

For help with reading and solving Exercise 62a, see p. 399.

70. a. Technology Suppose f(x) = 3x and $g(x) = x^2 + 3$. In the spreadsheet, values for x are in Column A. What do the formulas in B and C represent?

	А	В	С	D	Е
1		=3*A1	=A1^2+3		
2	0				
3	5				
4	10				

- **b.** If the formulas in columns B and C are copied down the columns, what numbers will appear?
- **c.** Find $(f \circ g)(x)$.
- **d.** Complete column D for $(f \circ g)(x)$.
- **e.** Find $(g \circ f)(x)$.
- **f.** Complete column E for $(g \circ f)(x)$.
- **71.** Profit A craftsman makes and sells violins. The function C(x) = 1000 + 700xrepresents his cost in dollars to produce x violins. The function I(x) = 5995xrepresents the income in dollars from selling x violins.
 - **a.** Write and simplify a function P(x) = I(x) C(x).
 - **b.** Find P(30), the profit earned when he makes and sells 30 violins.

bonus on weekly sales over \$5000.

- **a.** Explain what each function above represents.
- **b.** Which composition, $(h \circ g)(x)$ or $(g \circ h)(x)$, represents the weekly bonus? Explain.

Let f(x) = 3x - 2 and $g(x) = x^2 + 1$. Perform each function operation and use the properties of real numbers to justify each step in simplifying your answer.

- **74.** (f g)(x)**73.** (f + g)(x)**75.** $(f \circ g)(x)$
- 76. Grades Suppose your teacher offers to give the whole class a bonus if everyone passes the next math test. The teacher says she will (1) give everyone a 10-point bonus and (2) increase everyone's grade by 9% of their score.
 - **a.** Let x represent the original test scores. Write statements (1) and (2) as the functions f(x) and g(x), respectively.
 - **b.** Explain the meaning of f(g(x)). Evaluate f(g(75)).
 - **c.** Explain the meaning of g(f(x)). Evaluate g(f(75)).
 - **d.** Does g(f(x)) = f(g(x))?

Challenge

Let $f(x) = x^4 + 2x^3 - 5x^2 - 10x$ and $g(x) = x^3 - 3x^2 - 5x + 15$. Perform each function operation and simplify, and then find the domain.

77.
$$f(x) \cdot g(x)$$
 78. $\frac{f(x)}{g(x)}$ **79.** $\frac{g(x)}{f(x)}$

72. Writing A salesperson earns a 3% f
$$g(x) = 0.03x$$

$$h(x) = x - 5000$$

Find each composition of functions. Simplify your answer.

80. Let
$$f(x) = \frac{1}{x}$$
. Find $f(f(x))$.
81. Let $f(x) = \frac{1}{x}$. Find $f(f(f(x)))$.
82. Let $f(x) = 1 - \frac{x}{2}$. Find $f(f(f(x)))$.
83. Let $f(x) = 2x - 3$. Find $\frac{f(1 + h) - f(1)}{h}$, $h \neq 0$.
84. Let $f(x) = 4x - 1$. Find $\frac{f(a + h) - f(a)}{h}$, $h \neq 0$.

Standardiz	ed Test Prep			
Multiple Choice	85. Let $f(x) = -4x - 4x - 5$	+ 1 and <i>g</i> (<i>x</i>) = 2 <i>x</i> - B. 6 <i>x</i> - 7	− 6. Find (<i>g</i> − <i>f</i>)(<i>x</i>). C. −6 <i>x</i> + 5	D. -6 <i>x</i> + 7
	86. If $f(x) = 2x^2$ and F. $6x^2$	d g(x) = 3x, what is G. $9x^2$; (g ∘ f)(x)? H. 18x ²	I. 8x ⁴
Short Response		and $g(x) = x + 3$, where $x + 3$, where $x = x + $	what does $(f \cdot g)(x)$ measures wer.	an? What is the
Quantitative Comparison	boxed quantity in C best answer. A. The quantity B. The quantity C. The two quan	Column A with the in Column A is gre in Column B is gre ntities are equal.		m B. Choose the
	Co	lumn A	Colu	mn B
Take It to the NET	88. (f	∘ <i>g</i>)(5)	(g °	f)(5)
www.PHSchool.com Web Code: aga-0706	89. (h	(f)(x)	(f · .	h)(x)
	90. (h	• <i>f</i>)(1)	(f • .	h)(1)
	91 . (g	• h)(x)	(h ·	g)(x)

Mixed Review

Lesson 7-5	Solve. Check for extraneous solutions.			
		+1 93. $x + 8 =$		$\sqrt{x^2 + 9} = x + 1$
	95. $(x^2 - 9)^{\frac{1}{2}} -$	$x = -3$ 96. $\sqrt{x^2 + x^2}$	-12 - 2 = x 97.	$(3x)^{\frac{1}{2}} = (x+6)^{\frac{1}{2}}$
Lesson 6-8	Expand each bino	mial.		
	98. $(x + 4)^8$	99. $(x + y)^6$	100. $(2x - y)^4$	101. $(2x - 3y)^7$
	102. $(9 - 2x)^5$	103. $(4x - y)^5$	104. $(x^2 + x)^4$	105. $(x^2 + 2y^3)^6$
Lesson 5-6	Simplify each exp	ression.		
	106. $(2 - 3\sqrt{-4})$	$+(4+2\sqrt{-16})$	107. $3\sqrt{-50}$ – (2	$-\sqrt{-32}$)
	108. $(6 + \sqrt{-20})$	$-(-7-\sqrt{-45})$	109. $(5 - \sqrt{-9})(2$	$-\sqrt{-36}$)